Journal Articles & Conference Papers

Journals

D. Jha et al., “ A Comprehensive analysis of classification methods in gastrointestinal endoscopy imaging ,” Medical Image Analysis, vol. 70, 2021.

D. Jha et al., “ Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning ,” IEEE Journal of Biomedical and Health Informatics, 2021.

H. Borgli*, V. Thambawita*, P. Smedsrud*, S. Hicks*, D. Jha*, S. Eskeland, et al., “ Hyper-Kvasir: A Comprehensive Multi-Class Image and Video Dataset for Gastrointestinal Endoscopy ,” Nature Scientific Data [Contributed equally], 2020.

P. Smedsrud*, H. Gjestang*, O. Nedrejord*, E. Næss*, V. Thambawita*, S. Hicks*, H. Borgli*, D. Jha*, et al., “ Kvasir-Capsule, a video capsule endoscopy dataset ,” Nature Scientific Data [equally contributed], 2021.

N. Tomar, D. Jha et al., “ FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation ,” IEEE Transactions on Neural Networks and Learning Systems, 2022.

A. Srivastava, D. Jha et al., “ MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation ,” IEEE Journal of Biomedical and Health Informatics, 2022.

T. Ross, A. Reinke, D. Jha et al., “ Comparative validation of multi-instance instrument segmentation in endoscopy: results of the ROBUST-MIS 2019 Challenge ,” Medical Image Analysis, vol. 70, 2021.

R. Khadka, D. Jha et al., “ Meta-learning with implicit gradients in a few-shot setting for medical image segmentation ,” Computers in Biology and Medicine, 2022.

Conferences

D. Jha et al., “ Kvasir-SEG: A segmented polyp dataset,” IEEE ISM, 2019.

S. A. Hicks, D. Jha, V. Thambawita, P. Halvorsen and M. Riegler, “ The EndoTect 2020 Challenge: Evaluation and Comparison of Classification, Segmentation and Inference Time for Endoscopy,” ICPR Workshop, 2020.

G.-P. Ji, Y.-C. Chou, D.-P. Fan, G. Chen, H. Fu, D. Jha, L. Shao, “ Progressively Normalized Self-Attention Network for Video Polyp Segmentation,” MICCAI, 2021.

N. K Tomar, D. Jha, U. Bagci, Sharib Ali, “ Text-guided attention for improved polyp segmentation,” MICCAI, 2022.

N. K. Tomar, A. Shergill, B. Rieders, U. Bagci, & D. Jha, “ TransResU-Net: Transformer-based ResU-Net for Real-Time Colonoscopy Polyp Segmentation,” IEEE BHI, 2022.